¼ö·Ï»çÇ× |
´ëÇÑÁö¸®ÇÐȸÁö , v.49 n.6(2014-12) |
ÁÖÁ¦¾î |
°ø°£ Çìµµ´Ð ¸ðµ¨ ; °ø°£Àû ÀÌÁú¼º ; LASSO ; Áö¸®°¡Áßȸ±Í ¸ðµ¨ ; Áö¸®°¡Á߶ó¼Ò ¸ðµ¨ ; ¾ÆÆÄÆ® °¡°Ý ; spatial hedonic model ; spatial heterogeneity ; least absolute shrinkage and selection operator(LASSO) ; geographically weighted regression(GWR) ; geographically weighted LASSO(GWL) ; apartment sales price |
¿ä¾à1 |
Áö¸®°¡Áßȸ±Í ¸ðµ¨(GWR)Àº ±¹ÁöÀûÀ¸·Î ÀÌÁúÀûÀÎ ºÎµ¿»ê °¡°ÝÀ» ÃßÁ¤ÇÒ ¼ö ÀÖ´Â µµ±¸·Î Æø³Ð°Ô È°¿ëµÇ¾î ¿Ô´Ù. ±×·³¿¡µµ ºÒ±¸ÇÏ°í GWRÀº °ø°£ÀûÀ¸·Î ÀÌÁúÀûÀÎ °¡°Ý°áÁ¤¿äÀÎÀÇ ¼±ÅÃÀ̳ª ±¹ÁöÀû ÃßÁ¤¿¡¼ÀÇ °üÃøÄ¡ ¼öÀÇ Á¦ÇÑ µî°ú °°Àº ÇѰ踦 °¡Áö°í ÀÖ´Ù. º» ¿¬±¸´Â ÀÌ·¯ÇÑ ÇѰ踦 ±Øº¹Çϱâ À§ÇÑ ´ë¾ÈÀ¸·Î ÃÖ±Ù ÁÖ¸ñ¹Þ°í ÀÖ´Â Áö¸®°¡Á߶ó¼Ò ¸ðµ¨(GWL)À» ÀÌ¿ëÇÏ¿© ±¹ÁöÀûÀ¸·Î ´Ù¾çÇÑ ºÎµ¿»ê °¡°Ý°áÁ¤¿äÀεéÀ» Ž»öÇÏ°í, ºÎµ¿»ê°¡°Ý ÃßÁ¤¿¡ ÀÖ¾î¼ GWL ¸ðµ¨ÀÇ Àû¿ë°¡´É¼ºÀ» »ìÆ캸°íÀÚ ÇÑ´Ù. À̸¦ À§ÇØ ¼¿ï½Ã ¾ÆÆÄÆ® °¡°ÝÀ» ´ë»óÀ¸·Î OLS, GWR, GWLÀÇ Çìµµ´Ð ¸ðµ¨À» ±¸ÃàÇÏ¿´À¸¸ç, ¸ðµ¨ÀÇ ¼³¸í·Â, ¿¹Ãø·Â, ´ÙÁß°ø¼±¼º Ãø¸é¿¡¼ À̵éÀ» ºñ±³¡¤ºÐ¼®ÇÏ¿´´Ù. ±× °á°ú, Àü¿ªÀû ¸ðµ¨¿¡ ºñÇØ ±¹ÁöÀû ¸ðµ¨ÀÌ ÀüüÀûÀÎ ¼³¸í·Â, ¿¹Ãø·ÂÀÌ ¿ì¼öÇÑ °ÍÀ¸·Î ³ªÅ¸³µÀ¸¸ç, ƯÈ÷ ±¹ÁöÀû ¸ðµ¨ Áß GWL ¸ðµ¨Àº ´ÙÁß°ø¼±¼º ¹®Á¦¸¦ ÀÚµ¿ÀûÀ¸·Î ÇØ°áÇÏ¸é¼ °ø°£ÀûÀ¸·Î ÀÌÁúÀûÀÎ °¡°Ý°áÁ¤¿äÀÎ ÁýÇÕµéÀ» µµÃâÇÏ¿´°í, ´Ù¸¥ ¸ðµ¨µé¿¡ ºñÇØ »ó´çÈ÷ ³ôÀº ¼³¸í·Â°ú ¿¹Ãø·ÂÀ» º¸¿©ÁÖ°í ÀÖ´Ù. º» ¿¬±¸¿¡¼ Àû¿ëÇÑ GWL ¸ðµ¨Àº °íÂ÷¿øÀÇ µ¥ÀÌÅͼ¿¡¼ À¯ÀǹÌÇÑ µ¶¸³ º¯¼öµéÀ» È¿À²ÀûÀ¸·Î ¼±Á¤Çϴµ¥ Á÷Á¢ÀûÀÎ µµ¿òÀ» ÁÜÀ¸·Î½á ºÎµ¿»ê°ú °°ÀÌ ´ë¿ë·®ÀÇ º¹ÀâÇÑ ±¸Á¶¸¦ °¡Áø °ø°£ ºòµ¥ÀÌÅ͸¦ À§ÇÑ À¯¿ëÇÑ ºÐ¼® ±â¹ýÀ¸·Î È°¿ëµÉ ¼ö ÀÖÀ» °ÍÀÌ´Ù. |
¿ä¾à2 |
Geographically weighted regression(GWR) model has been widely used to estimate spatially heterogeneous real estate prices. The GWR model, however, has some limitations of the selection of different price determinants over space and the restricted number of observations for local estimation. Alternatively, the geographically weighted LASSO(GWL) model has been recently introduced and received a growing interest. In this paper, we attempt to explore various local price determinants for the real estate by utilizing the GWL and its applicability to forecasting the real estate price. To do this, we developed the three hedonic models of OLS, GWR, and GWL focusing on the sales price of apartments in Seoul and compared those models in terms of model t, prediction, and multicollinearity. As a result, local models appeared to be better than the global OLS on the whole, and in particular, the GWL appeared to be more explanatory and predictable than other models. Moreover, the GWL enabled to provide spatially dierent sets of price determinants which no multicollinearity exists. e GWL helps select the signicant sets of independent variables from a high dimensional dataset, and hence will be a useful technique for large and complex spatial big data. |