¼ö·Ï»çÇ× |
´ëÇÑÁö¸®ÇÐȸÁö , v.49 n.6(2014-12) |
ÁÖÁ¦¾î |
°íÇ÷¾Ð À¯º´·ü ; Áö¿ª°£ º¯ÀÌ ; Áö¸®Àû °¡Áßȸ±ÍºÐ¼® ; ÀÇ»ç°áÁ¤³ª¹« ¸ðÇü ; Áö¿ª»çȸ°Ç°Á¶»ç ; Hypertension Prevalence ; Geographical Variations ; Geographically Weighted Regression ; Decision Tree Model ; Korean Community Health Survey |
¿ä¾à1 |
°íÇ÷¾Ð°ú °°Àº ¸¸¼º ÁúȯÀÇ °ü¸®´Â ±¹°¡º¸°ÇÁ¤Ã¥¿¡¼ Áß¿äÇÑ »ç¾÷ÀÌ´Ù. º» ¿¬±¸´Â Áö¿ª»çȸ Ư¼ºÀÌ °íÇ÷¾ÐÀÇ À¯º´·ü¿¡ ¾î¶»°Ô ¿µÇâÀ» ÁÖ´ÂÁö¸¦ ºÐ¼®ÇÏ¿´´Ù. ºÐ¼®À» À§ÇØ 237°³ ½Ã±º±¸ ¼ÒÁö¿ªÀÇ °Ç°»óÅ ¹× °Ç°ÇàŸ¦ Æ÷ÇÔÇÑ ´Ù³â°£ÀÇ ÀڷḦ ¼öÁýÇÏ¿´´Ù. ÁöÇ¥´Â 2009~2011³â Áúº´°ü¸®º»ºÎÀÇ Áö¿ª»çȸ°Ç°Á¶»ç¿Í ±¹¹Î°Ç°º¸Çè°ø´Ü µîÀÇ ÀڷḦ »ç¿ëÇÏ¿´´Ù. Áö¿ª°£ º¯ÀÌ ºÐ¼®À» À§ÇØ Áö¸®Àû °¡Áßȸ±ÍºÐ¼®°ú ÀÇ»ç°áÁ¤³ª¹« ¸ðÇüÀ» ÀÌ¿ëÇÏ¿´´Ù. ¿¬±¸°á°ú ´Ù³â°£ ÀڷḦ ÀÌ¿ëÇÏ´Â °ÍÀÌ ´Ü³â°£ ÀڷḦ ÀÌ¿ëÇÏ´Â °Íº¸´Ù ´õ ÀûÇÕµµ°¡ ³ô¾Ò´Âµ¥ ÀÌ°ÍÀº ´ëºÎºÐÀÇ º¯¼ö¿¡¼ ¿¬µµº° À¯ÀÇÇÑ Â÷ÀÌ°¡ ÀÖ¾ú±â ¶§¹®ÀÌ´Ù. ¶Ç °íÇ÷¾Ð À¯º´·üÀº ´ç´¢º´ ¹× ºñ¸¸ À¯º´·ü°ú ¾çÀÇ °ü·Ã¼ºÀÌ ÀÖ¾úÀ¸¸ç Àα¸¹Ðµµ¿Í´Â À½ÀÇ »ó°ü°ü°è¸¦ º¸¿´´Ù. ƯÈ÷ ÀÌ·¯ÇÑ ¿äÀεéÀÇ Áö¿ªÀû º¯ÀÌ´Â Áö¸®Àû °¡Áßȸ±ÍºÐ¼® °á°ú¿¡¼ ´õ¿í ¶Ñ·ÇÇÏ¿´´Ù. ÀÌ»óÀÇ °á°ú¸¦ ¹ÙÅÁÀ¸·Î ºÐ¼®ÇÑ ÀÇ»ç°áÁ¤³ª¹« ¸ðÇü¿¡¼´Â °íÇ÷¾Ð À¯º´·ü¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â Áß¿äÇÑ º¯¼ö°¡ Áö¿ªº°·Î ¸Å¿ì »óÀÌÇÏ´Ù´Â °ÍÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù. Áö¿ªÁÖ¹ÎÀÇ °Ç°»óÅÂ, °Ç°ÇàÅÂ, »çȸ°æÁ¦Àû ¿äÀÎÀÇ Áö¿ª°£ Â÷À̸¦ ±Ô¸íÇÏ´Â °ÍÀº °íÇ÷¾Ð À¯º´·üÀ» °¨¼Ò½ÃÅ°±â À§ÇÑ Áö¿ªº° ¸ÂÃãÇü º¸°ÇÁ¤Ã¥À» ¼ö¸³Çϴµ¥ ¸Å¿ì Áß¿äÇÏ´Ù. º» ¿¬±¸ÀÇ °á°ú´Â ¸¸¼ºÁúȯ °ü¸®¸¦ À§ÇÑ ¸ÂÃãÇü Áö¿ªº¸°ÇÁ¤Ã¥À» ¼ö¸³Çϴµ¥ ±âÃÊÀڷḦ Á¦°øÇÒ ¼ö ÀÖ´Ù´Â µ¥ ÀÇÀÇ°¡ ÀÖ´Ù. |
¿ä¾à2 |
As chronic diseases have become more prevalent and problematic, effective cares for major chronic diseases have been a locus of the healthcare policy. In this regard, this study examines how regionspecific characteristics affect the prevalence of hypertension in South Korea. To analyze, we combined a unique multi-year data set including key indicators of health conditions and health behaviors at the 237 small administrative districts. The data are collected from the Annual Community Health Survey between 2009 and 2011 by Korea Centers for Disease Control and Prevention and other government organizations. For the purpose of investigating regional variations, we estimated using Geographically Weighted Regression (GWR) and decision tree model. Our nding rst suggests that using the multi-year data is more legitimate than using the single-year data for the geographical analysis of chronic diseases, because the signicant annual dierences are observed in most variables. We also nd that the prevalence of hypertension is more likely to be positively associated with the prevalence of diabetes and obesity but to be negatively associated with population density. More importantly, noticeable geographical variations in these factors are observed according to the results from the GWR. In line with this result, additional ndings from the decision tree model suggest that primary inuential factors that aect the hypertension prevalence are indeed heterogeneous across regional groups. Taken as a whole, accounting for geographical variations of health conditions, health behaviors and other socioeconomic factors is very important when the regionally customized healthcare policy is implemented to mitigate the hypertension prevalence. In short, our study sheds light on possible ways to manage the chronic diseases for policy makers in the local government. |