¼ö·Ï»çÇ× |
Çѱ¹Áö¿ª°³¹ßÇÐȸÁö , Vol.34 No.5(2022-12) |
ÁÖÁ¦¾î |
ºóÁý; Àü±â»ç¿ë·®; °èÀýÀÚ±âȸ±ÍÀ̵¿Æò±Õ¸ðÇü; Áö¼öÆòÈ°¹ý ; Vacant House; Electricity Consumption; SARIMA; Smoothing Models |
¿ä¾à1 |
ºñ¼öµµ±ÇÀÇ °æ¿ì ¼öµµ±ÇÀ¸·ÎÀÇ Àα¸ ÁýÁßÇö»óÀÌ Áö¼ÓµÊ¿¡ µû¶ó Àα¸À¯Ãâ·Î ÀÎÇØ ¹ß»ýÇÏ´Â ºóÁý ¼ö´Â Çظ¶´Ù Áõ°¡ÇÏ°í ÀÖ´Ù. ºóÁý ¹®Á¦´Â Áö¿ª ³» °æÁ¦ ºÒ¾È°¨°ú ¹üÁ˹߻ý µî ´Ù¾çÇÑ ¿äÀεé·Î ÀÎÇØ ¿øÀÎÀ» ÀÏÀ¸Å°°í ÀÖ´Â ¸¸Å µµ½Ã¹ßÀü¿¡ ¾Ç¿µÇâÀ» ÃÊ·¡½Ãų ¼ö ÀÖÀ¸¸ç °ÅÁֹεéÀÇ »îÀÇ Áú¿¡ ¸¹Àº ¿µÇâÀ» ¾ß±â½ÃŲ´Ù. ÇÏÁö¸¸ ºóÁý¿¡ °üÇÑ ÀڷᱸÃàÀÌ ´Ù¼Ò ¹ÌÈíÇÒ »Ó¸¸ ¾Æ´Ï¶ó ³·Àº ½ÇÈ¿¼ºÀ¸·Î ÀÎÇØ ¸í·áÇÑ ÀڷᱸÃàÀÇ °³¼±¹æ¾ÈÀÌ ÇÊ¿äÇÑ ½ÇÁ¤ÀÌ´Ù. ÀÌ¿¡ ´ëÇÑ ºóÁý½ÇŸ¦ À籸¼º ÇÏ°íÀÚ º» ¿¬±¸¿¡¼´Â ºóÁý ¼ö¸¦ ÃßÁ¤ÇÑ ÈÄ ÇâÈÄ ºóÁý¼ö¸¦ ½Ã°è¿ÀÚ·á·Î ¿¹ÃøÇÑ µÚ ºóÁý¹®Á¦¿¡ ´ëÇÑ ½Ã»çÁ¡À» µµÃâÇÏ°íÀÚ ÇÑ´Ù. º» ¿¬±¸´Â ºÎ»ê±¤¿ª½Ã¿Í °æ»ó³²µµ¸¦ ´ë»óÀ¸·Î ºóÁý ÃßÁ¤¹æ¹ýÀ» ±âÃÊ·Î ÇÏ¿© 2012³âºÎÅÍ 2020³â±îÁö 60ÁÖ±âÀÇ ºóÁýÇöȲÀ» ÁÖ°Å¿ë Àü±â¿¡³ÊÁö »ç¿ë·®À» ÅëÇØ ºóÁý ¼ö¸¦ ÃßÁ¤ÇÏ°í °èÀýÀÚ±âȸ±ÍÀ̵¿Æò±Õ¸ðÇü(SARIMA)À» È°¿ëÇÏ¿© ÇâÈÄ 5³â°£ ºóÁý ¼öÀÇ ¿¹Ãø·ÂÀ» Á¦¾ÈÇÑ´Ù. ±× °á°ú, »ç·ÊÁö¿ª ¸ðµÎ ¸Å¿ù¸¶´Ù ¾à¼ÒÇÑ Â÷ÀÌ°¡ Á¸ÀçÇϳª Àå±âÀûÀ¸·Î ºóÁý ¼ö´Â Áõ°¡ÇÏ´Â Ãß¼¼·Î ³ªÅ¸³µ´Ù. ¶ÇÇÑ, MAPE°ªÀ¸·Î º» ¸ðÇü ÀûÇÕµµ Ãø¸é¿¡¼´Â ºÎ»ê½Ã¿¡¼ °èÀý ARIMA¸ðÇüÀÌ 4.96%, Áö¼öÆòÈ°¹ýÀÌ 6.45%, °æ³²Áö¿ª¿¡¼´Â °èÀý ARIMA¸ðÇü 2.51%, Áö¼öÆòÈ°¹ý 7.44%·Î µÎ Áö¿ª ¸ðµÎ Áö¼öÆòÈ°¹ýº¸´Ù °èÀýARIMA¸ðÇü¿¡¼ ¿¹Ãø·Â¿¡ ½Å·Úµµ¸¦ º¸¿©ÁÖ¸é¼ ÀûÀý¼ºÀ» ÀÔÁõÇÏ¿´´Ù. ÀÌ·¯ÇÑ °á°ú¸¦ Åä´ë·Î ºóÁý¹®Á¦¿¡ ´ëÇÑ Á¤Ã¥Á¡ ÇÔÀǸ¦ Á¦½ÃÇÏ¿´À¸¸ç ÃßÈÄ °¢ Áö¿ªº°·Î ºóÁý ºóµµ¸¦ ¼¼ºÐÈÇÏ¿© ºóÁý ¹ß»ý¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡´ÂÁö Àα¸±¸Á¶¿Í ÇÔ²² ±¸Ã¼ÀûÀÎ ¿¬±¸¹æÇâÀ¸·Î È®Àå½Ãų ¼ö ÀÖÀ» °ÍÀ¸·Î º¸ÀδÙ. |
¿ä¾à2 |
As the vacant house problem is causing various factors such as economic insecurity and crime in the region, it can adversely affect urban development and cause a lot of effects on the quality of life of residents. However, not only is the data construction on empty houses somewhat insufficient, but due to its low effectiveness, clear data construction improvement measures are needed. In order to reconstruct the situation of empty houses, this study estimates the number of empty houses, predicts the number of empty houses in the future as time series data, and derives implications for the problem of empty houses. Based on the empty house estimation method for Busan and Gyeongsangnam-do, this study estimates the number of empty houses in 60 cycles from 2012 to 2020 through residential electric energy usage and proposes the predictive power of empty houses over the next five years using the SARIMA. As a result, there is a slight difference every month in all case areas, but the number of vacant houses is increasing in the long run. In addition, in terms of model suitability, the adequacy was demonstrated by showing reliability in the predictive power in the seasonal ARIMA model rather than the exponential smoothing method. Based on this, policy points on the issue of vacant houses were presented, and it is expected that the frequency of vacant houses can be subdivided for each region in the future to expand the impact on the occurrence of vacant houses along with the population structure. |