³í¹®¸í |
½º¸¶Æ® Ȩ ȯ°æ¿¡¼ÀÇ Àç½ÇÀÚ ÀÏ»ó»ýȰ Ȱµ¿ ÆÐÅÏ ÃßÃâÀ» À§ÇÑ Çൿ ÄÁÅØ½ºÆ®È ÇÁ·Î¼¼½º¿¡ °üÇÑ ¿¬±¸ / Behavioral Contextualization for Extracting Occupant's ADL Patterns in Smart-home Environment |
ÀúÀÚ¸í |
À̺¸°æ(Lee, Bogyeong) ; ÀÌÇö¼ö(Lee, Hyun-Soo) ; ¹Ú¹®¼(Park, Moonseo) |
¼ö·Ï»çÇ× |
Çѱ¹°Ç¼³°ü¸®ÇÐȸ ³í¹®Áý, Vol.19 No.1 (2018-01) |
ÆäÀÌÁö |
½ÃÀÛÆäÀÌÁö(21) ÃÑÆäÀÌÁö(11) |
ÁÖÁ¦¾î |
ÀÏ»ó»ýȰ Ȱµ¿ ; Çൿ ÄÁÅØ½ºÆ®È ; °£Á¢Àû ¼¾½Ì ¹æ½Ä ; ½º¸¶Æ® Ȩ ; Activities of Daily Living (ADL) ; Behavioral Contextualization ; Non-intrusive Sensing Approach ; Smart-home |
¿ä¾à1 |
°í·ÉÀÚ °¡±¸ÀÇ ±Þ°ÝÇÑ Áõ°¡´Â Àü ¼¼°èÀû Ãß¼¼À̸ç ÀÇ·áºñ µî »çȸÀû ºñ¿ë ¶ÇÇÑ ±Þ°ÝÈ÷ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÈ´Ù. Ä¡¸Å¿Í °°Àº ³ëÀμº ±â´É ÁúȯÀÇ °æ¿ì °í·ÉÀÚÀÇ ÀÏ»ó»ýȰ Ȱµ¿ (ADL) ÆÐÅÏÀ» »ó½ÃÀûÀ¸·Î ¸ð´ÏÅ͸µÇÏ°í Æò¼Ò¿Í ´Ù¸£°Å³ª ºñÁ¤»óÀûÀÎ ÆÐÅÏÀÌ ¹ß»ýÇÏ´Â °æ¿ì À̸¦ Ä¡¸Å Á¶±âÁø´ÜÀÇ ±Ù°Å·Î Ȱ¿ëÇÒ ¼ö ÀÖ´Ù. ±×·¯³ª »ç»ýȰ Ä§ÇØÀÇ ¿ì·Á°¡ Å« ±âÁ¸ÀÇ Á÷Á¢Àû ¼¾½Ì ¹æ½Ä°ú ´Þ¸® °£Á¢Àû ¼¾½Ì ¹æ½Ä (Non-intrusive approach)À» Ȱ¿ëÇÏ¿© Àç½ÇÀÚÀÇ ÃÖ¼ÒÇÑÀÇ Á¤º¸ (Coarse-grained data)¸¸À» ¼öÁýÇϰí, À̸¦ ÅëÇØ Ȱµ¿ Á¤º¸¸¦ ÃßÃâÇÏ´Â ¿¬±¸´Â °ÅÀÇ ÀÌ·ç¾îÁöÁö ¾Ê¾Ò´Ù. ¶ÇÇÑ ÃßÃâµÈ Ȱµ¿ ¹× Ȱµ¿ÆÐÅÏÀ» ÀÌÇØÇϱâ À§ÇØ È°µ¿ÀÇ ¸Æ¶ôÀû Á¤º¸¸¦ ½Ã°¢ÈÇÏ´Â ¹æ¹ý ¶ÇÇÑ Ãß°¡ÀûÀÎ ¿¬±¸°¡ ÇÊ¿äÇÏ´Ù. À̸¦ À§ÇØ º» ¿¬±¸¿¡¼´Â Àç½ÇÀÚÀÇ Á¤º¸ Áß ½Ã¡¤°ø°£ µ¥ÀÌÅÍ ·Î±×¸¸À» Ȱ¿ëÇÏ¿© Àç½ÇÀÚÀÇ ¼öÇà Ȱµ¿À» ÃßÃâÇϰí ÄÁÅØ½ºÆ®È µÈ Çൿ Á¤º¸¸¦ °ø°£-Ȱµ¿ Áöµµ (Space-Activity Map)·Î ½Ã°¢ÈÇÑ´Ù. º» ¿¬±¸´Â Àç½ÇÀÚÀÇ ÀÏ»ó»ýȰ Ȱµ¿ ÆÐÅÏÀ» ÃßÃâÇÏ´Â µ¥ ±â¹ÝÀÌ µÇ´Â ¿¬±¸·Î¼, ÇâÈÄ °í·ÉÀÚ¸¦ À§ÇÑ »ó½ÃÀûÀÎ °Ç° ¸ð´ÏÅ͸µ ±â¼úÀÇ µµÀÔ¿¡ ±â¿©ÇÒ ¼ö ÀÖ´Ù. |
¿ä¾à2 |
The rapid increase of the elderly living alone is a critical issue in worldwide as it leads to a rapid increase of a social support costs (e.g., medical expenses) for the elderly. In early stages of dementia, the activities of daily living (ADL) including self-care tasks can be affected by abnormal patterns or behaviors and used as an evidence for the early diagnosis. However, extracting activities using non-intrusive approach is still quite challenging and the existing methods are not fully visualized to understand the behavior pattern or routine. To address these issues, this research suggests a model to extract the activities from coarse-grained data (spatio-temporal data log) and visualize the behavioral context information. Our approach shows the process of extracting and visualizing the subject's space-activity map presenting the context of each activity (time, room, duration, sequence, frequency). This research contributes to show a possibility of detecting subject's activities and behavioral patterns using coarse-grained data (limited to spatio-temporal information) with little infringement of personal privacy. |