°ÇÃ൵½Ã°ø°£¿¬±¸¼Ò

Architecture & Urban Research Institute

pdf¿ø¹®º¸±â ¿¡·¯ ÇØ°á¹æ¹ý ¹Ù·Î°¡±â



¹®ÇåȨ > ¿¬±¸³í¹® > »ó¼¼

[¿ø¹®º¸±â½Ã ¼ÒºñµÇ´Â Æ÷ÀÎÆ® : 100 Æ÷ÀÎÆ®] ¹Ì¸®º¸±â Àοë

Çѱ¹Àü»ê±¸Á¶°øÇÐȸ|Çѱ¹Àü»ê±¸Á¶°øÇÐȸ³í¹®Áý 2024³â 10¿ù

³í¹®¸í ¸Å´ÏÆúµå µ¥ÀÌÅÍ Áõ°­±â¹ý ±â¹ÝÀÇ µö·¯´× ¹æ¹ý·ÐÀ» Àû¿ëÇÑ Ãà¼Ò ¸ðµ¨ °³¹ß / Development of a Reduced Order Model using a Deep Learning-based Manifold-Augmented Approach
ÀúÀÚ¸í õ¼º¿ì ; ±èÇýÁø ; ·ù¼®Èñ ; Á¶Çؼº ; ÀÌÇÐÁø
¹ßÇà»ç Çѱ¹Àü»ê±¸Á¶°øÇÐȸ
¼ö·Ï»çÇ× Çѱ¹Àü»ê±¸Á¶°øÇÐȸ³í¹®Áý, Vol.37 No.5 (2024-10)
ÆäÀÌÁö ½ÃÀÛÆäÀÌÁö(337) ÃÑÆäÀÌÁö(8)
ISSN 1229-3059
ÁÖÁ¦ºÐ·ù ±¸Á¶
ÁÖÁ¦¾î ¸Å´ÏÆúµå ·¯´×; ¸ðµ¨ Â÷¼ö Ãà¼Ò; µö·¯´×; ¿¬»êÀ¯Ã¼¿ªÇÐ; µ¥ÀÌÅÍ Áõ°­ ; manifold learning; model-order reduction; deep learning; data augmentation
¿ä¾à1 º» ³í¹®¿¡¼­´Â Àú ·¹À̳îÁî ¼ö ¿µ¿ª¿¡¼­ ¿¡¾îÆ÷ÀÏÀÇ °ø±â¿ªÇÐÀû ¼º´ÉÀ» ¿¹ÃøÇϱâ À§ÇÑ µö·¯´× ±â¹ÝÀÇ Ãà¼Ò ¸ðµ¨À» Á¦½ÃÇÏ¿´´Ù. µö·¯´× ±â¹Ý Ãà¼Ò ¸ðµ¨¿¡¼­ CFD Çؼ® °á°úÀÇ ³ôÀº Â÷¿øÀÇ µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î ´Ù·ç±â À§ÇØ º¯ÀÌÇü ¿ÀÅäÀÎÄÚ´õ¸¦ °áÇÕÇÑ ÇÕ¼º°ö ½Å°æ¸ÁÀ» Àû¿ëÇÏ¿´´Ù. ºÎȣȭ °Å¸® ÇÔ¼ö¸¦ ÅëÇØ ¿¡¾îÆ÷ÀÏÀÇ Çü»ó°ú À¯µ¿ Á¶°ÇÀ» À̹ÌÁö µ¥ÀÌÅÍÈ­ ÇÏ°í, ÀÌ¿¡ ´ëÇØ ÇÕ¼º°ö ½Å°æ¸ÁÀ» ¸Å°³º¯¼öÈ­ ÇÏ¿´´Ù. ¶ÇÇÑ, Àü»êÀ¯Ã¼¿ªÇÐ Çؼ®ÀÇ °è»ê ºñ¿ëÀ¸·Î ÀÎÇÑ ºÎÁ·ÇÑ ÈÆ·Ã µ¥ÀÌÅ͸¦ ±Øº¹Çϱâ À§ÇØ Åõ¿µ ±â¹ÝÀÇ ºñ¼±Çü ¸Å´ÏÆúµå µ¥ÀÌÅÍ Áõ°­±â¹ýÀ» °³¹ßÇÏ¿´´Ù. NACA 4°è¿­ ¿¡¾îÆ÷ÀÏÀº Çؼ® ¿¹Á¦·Î °í·ÁÇÏ¿© Á¦¾ÈÇÏ´Â ÇÁ·¹ÀÓ¿öÅ©ÀÇ ³»»ð°ú ¿Ü»ð Á¤È®µµ¸¦ Æò°¡ÇÏ¿´À¸¸ç ¸Å´ÏÆúµå µ¥ÀÌÅÍ Áõ°­±â¹ýÀ» Àû¿ëÇÏ¿© ÇÁ·¹ÀÓ¿öÅ©ÀÇ Á¤È®µµ Çâ»óÀ» È®ÀÎÇÏ¿´´Ù.
¿ä¾à2 This study presents a deep learning-based framework to predict the aerodynamic performance of low Reynolds number airfoils. The framework employs a convolutional neural network (CNN) combined with a variational autoencoder (VAE) to efficiently handle large datasets. Moreover, the signed distance function is used as the network input to represent the airfoil configuration in the image data and parameterize the CNN. A novel generative model based on projection-based manifold learning is proposed to overcome the data mining limitation of computational fluid dynamics which may incur significant computational costs. The interpolation and extrapolation accuracy of the proposed framework is evaluated using the NACA 4-digit airfoil configuration.The results show improved accuracy via data augmentation performed by the proposed generative model.
¼ÒÀåó Çѱ¹Àü»ê±¸Á¶°øÇÐȸ
¾ð¾î Çѱ¹¾î
DOI https://doi.org/10.7734/COSEIK.2024.37.5.337