°ÇÃ൵½Ã°ø°£¿¬±¸¼Ò

Architecture & Urban Research Institute

pdf¿ø¹®º¸±â ¿¡·¯ ÇØ°á¹æ¹ý ¹Ù·Î°¡±â



¹®ÇåȨ > ¿¬±¸³í¹® > »ó¼¼

[¿ø¹®º¸±â½Ã ¼ÒºñµÇ´Â Æ÷ÀÎÆ® : 100 Æ÷ÀÎÆ®] ¹Ì¸®º¸±â Àοë

´ëÇѼ³ºñ°øÇÐȸ|¼³ºñ°øÇÐ³í¹®Áý 2025³â 4¿ù

³í¹®¸í °Ç¹° ÅëÇÕÇü ¿Á»ó¿Â½ÇÀÇ ³Ã³­¹æ ºÎÇÏ Àý°¨À» À§ÇÑ Àΰø½Å°æ¸Á ±â¹Ý ¿¹Ãø ¸ðµ¨ ±¸Ãà / Development of Predictive Model for Building-integrated Rooftop Greenhouse using Artificial Neural Networks
ÀúÀÚ¸í À̵µÀ±(Doyun Lee) ; ÀÌ»ó¹Î(Sang Min Lee) ; ÃÖÀºÁ¤(Eun Jung Choi)
¹ßÇà»ç ´ëÇѼ³ºñ°øÇÐȸ
¼ö·Ï»çÇ× ¼³ºñ°øÇÐ³í¹®Áý, Vol.37 No.04 (2025-04)
ÆäÀÌÁö ½ÃÀÛÆäÀÌÁö(185) ÃÑÆäÀÌÁö(11)
ISSN 1229-6422
ÁÖÁ¦ºÐ·ù ȯ°æ¹×¼³ºñ
ÁÖÁ¦¾î Àΰø½Å°æ¸Á; °Ç¹° ÅëÇÕÇü ¿Á»ó¿Â½Ç; ¿¡³ÊÁö È¿À²; ÃÖÀû Á¦¾î; ¿¹Ãø ¸ðµ¨ ; Artificial neural networks; Building-integrated rooftop greenhouse; Energy efficiency; Optimal control; Predictive model
¿ä¾à1 º» ¿¬±¸¿¡¼­´Â °Ç¹° ÅëÇÕÇü ¿Á»ó¿Â½Ç¿¡¼­ ¿Â½ÇÀÇ ¿î¿µ ½Ã½ºÅÛÀÇ Á¦¾î º¯¼ö Á¶ÇÕÀÌ °Ç¹°°ú ¿Â½ÇÀÇ Á¾ÇÕÀûÀÎ ³Ã³­¹æ ºÎÇÏ º¯µ¿¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ÁÖ¸ñÇÏ¿©, ¿Â½Ç ½Ã½ºÅÛÀÇ Á¦¾î º¯¼öÀÇ º¯µ¿¿¡ µû¸¥ °Ç¹° ÅëÇÕÇü ¿Á»ó¿Â½ÇÀÇ ºÎÇϰ¡ ¿¹Ãø °¡´ÉÇÑ ¸ðµ¨À» ±¸ÃàÇÏ¿´´Ù. ¿¹Ãø ¸ðµ¨Àº °Ç¹°°ú ¿Á»ó¿Â½ÇÀÇ º¹ÀâÇÑ ºñ¼±ÇüÀû °ü°èÀÇ ¿­Àû °Åµ¿À» °í·ÁÇÏ¿© Àΰø½Å°æ¸ÁÀ» Ȱ¿ëÇÏ¿© ¸ðµ¨¸µ ÇÏ¿´´Ù.
ÇнÀ µ¥ÀÌÅͷδ ¼±Çà ¿¬±¸¿¡¼­ °³¹ßÇÏ°í °ËÁõÇÑ TRNSYS ¸ðµ¨À» Ȱ¿ëÇÑ ½Ã¹Ä·¹ÀÌ¼Ç µ¥ÀÌÅ͸¦ ¼öÁýÇÏ¿© Ȱ¿ëÇÏ¿´À¸¸ç, Àΰø½Å°æ¸Á ¸ðµ¨ÀÇ ¿¹Ãø Á¤¹Ðµµ¿¡ ¿µÇâÀ» ÁÙ ¼ö ÀÖ´Â ÇÏÀÌÆÛÆÄ¶ó¹ÌÅÍ´Â º£ÀÌÁö¾È ÃÖÀûÈ­¸¦ ÅëÇÏ¿© Æ©´×ÇÏ¿´´Ù. ±× °á°ú, ASHRAE Guideline 14¿¡¼­ Á¦½ÃÇÏ´Â Æò°¡ÁöÇ¥ÀÇ ¿ÀÂ÷ Çã¿ë¹üÀ§¿¡ ÁؼöÇÏ´Â ¿¹Ãø Á¤¹Ðµµ¸¦ º¸¿©ÁÖ´Â Àΰø½Å°æ¸Á ¸ðµ¨À» ±¸ÃàÇÏ¿´°í, °¢ ¿Â½Ç Ãø ¿Âµµ¿Í ³Ã³­¹æ ºÎÇÏ ±×¸®°í °Ç¹° Ãø ³Ã³­¹æ ºÎÇϰ¡ ³ôÀº ¿¹Ãø Á¤¹Ðµµ·Î ¿¹Ãø °¡´ÉÇÔÀ» È®ÀÎÇÏ¿´´Ù.
´Ù¸¸, º» ¿¬±¸¿¡¼­ Àΰø½Å°æ¸Á ¿¹Ãø ¸ðµ¨ÀÇ ÇнÀ¿¡ Ȱ¿ëÇÑ µ¥ÀÌÅÍ´Â °Ç¹° ÅëÇÕÇü ¿Á»ó¿Â½ÇÀÇ Å×½ºÆ®º£µåÀÇ °Ç¹°°ú ¿Â½ÇÀÇ ¿ÜÇÇ Á¶°ÇÀ» ¸ðµ¨¸µÇÑ TRNSYS ½Ã¹Ä·¹ÀÌ¼Ç ¸ðµ¨ÀÇ °á°úÀÓÀ¸·Î, °³¹ßÇÑ ¿¹Ãø ¸ðµ¨À» ½ÇÁ¦ Å×½ºÆ®º£µåÀÇ Á¦¾î¿¡ Ȱ¿ëÇÒ ¶§¿¡´Â Àû¿ë ¹üÀ§°¡ Á¦ÇÑµÉ ¼ö ÀÖÀ¸¸ç, Çö½ÇÀûÀÎ ¿î¿µ ȯ°æ¿¡¼­µµ ³ôÀº ¿¹Ãø ¼º´ÉÀ» º¸ÀåÇÒ ¼ö ÀÖµµ·Ï ½ÇÁ¦ µ¥ÀÌÅ͸¦ ÇнÀ µ¥ÀÌÅÍ¿¡ º¸°­ÇÏ´Â ¹æ¹ý µîÀÇ Ãß°¡ÀûÀÎ °ËÁõ°ú °³¼±ÀÌ ÇÊ¿äÇÒ ¼ö ÀÖ´Ù.
º» ¿¬±¸¿¡¼­ ±¸ÃàÇÑ Àΰø½Å°æ¸Á ±â¹Ý °Ç¹° ÅëÇÕÇü ¿Á»ó¿Â½ÇÀÇ ºÎÇÏ ¿¹Ãø ¸ðµ¨Àº, ÇâÈÄ °Ç¹°°ú ¿Â½ÇÀÇ ºÎÇÏ Æ¯¼ºÀ» Á¾ÇÕÀûÀ¸·Î °í·ÁÇÏ¿© ¿Â½Ç ¿î¿µ ½Ã½ºÅÛÀ» ½Ç½Ã°£À¸·Î ÃÖÀû Á¦¾îÇÏ´Â ¾Ë°í¸®Áò °³¹ß¿¡ Ȱ¿ëÇϰíÀÚ ÇÑ´Ù. º» ¿¬±¸¿¡¼­ ±¸ÃàÇÑ ¿¹Ãø ¸ðµ¨À» Ȱ¿ëÇØ ¿Â½Ç ¿î¿µ ½Ã½ºÅÛÀ» ½Ç½Ã°£ Á¦¾îÇÑ´Ù¸é, °Ç¹°°ú ¿Â½ÇÀÇ ³Ã³­¹æ ºÎÇϸ¦ ÃÖÀûÈ­ÇÏ°í ¿¡³ÊÁö È¿À²À» ±Ø´ëÈ­ÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëµÈ´Ù.
¿ä¾à2 The rapid growth of the global population and urbanization has significantly reduced the availability of arable land, threatening food supply chains. In response, urban agriculture has emerged as a viable solution to address future food security challenges while promoting sustainability in urban settings. Among various urban agriculture models, building-integrated rooftop greenhouses (BiRTGs) present a promising approach by utilizing underused building spaces and enhancing energy efficiency through dynamic energy exchanges between buildings and greenhouses. This study developed a predictive model to optimize the operational control of BiRTGs, focusing on how greenhouse control variables impact the heating and cooling loads of both the building and the greenhouse. An artificial neural network (ANN) was used to simulate the complex thermal interactions between the two structures. The ANN models were trained with simulation data from a validated TRNSYS model, and their predictive accuracy was assessed using performance metrics outlined in ASHRAE Guideline 14. The results indicated that the ANN models achieved high accuracy in predicting the heating and cooling loads of BiRTGs, establishing a strong foundation for the development of real-time optimization algorithms for these systems.
¼ÒÀåó ´ëÇѼ³ºñ°øÇÐȸ
¾ð¾î Çѱ¹¾î
DOI https://doi.org/10.6110/KJACR.2025.37.4.185