°ÇÃ൵½Ã°ø°£¿¬±¸¼Ò

Architecture & Urban Research Institute

pdf¿ø¹®º¸±â ¿¡·¯ ÇØ°á¹æ¹ý ¹Ù·Î°¡±â



¹®ÇåȨ > ¿¬±¸³í¹® > »ó¼¼

[¿ø¹®º¸±â½Ã ¼ÒºñµÇ´Â Æ÷ÀÎÆ® : 100 Æ÷ÀÎÆ®] ¹Ì¸®º¸±â Àοë

´ëÇÑÅä¸ñÇÐȸ|´ëÇÑÅä¸ñÇÐȸ³í¹®Áý 2025³â 6¿ù

³í¹®¸í Tabu Search-Ant Colony ¾Ë°í¸®ÁòÀ» Ȱ¿ëÇÑ ±³Â÷·Î ½ÅÈ£ ÃÖÀûÈ­ ¿¬±¸ / Study on Intersection Signal Optimization Using Tabu Search-Ant Colony Algorithm
ÀúÀÚ¸í ¾ÈÈ«±â(An, Hong Ki);±èµ¿¼±(Kim, Dong Sun)
¹ßÇà»ç ´ëÇÑÅä¸ñÇÐȸ
¼ö·Ï»çÇ× ´ëÇÑÅä¸ñÇÐȸ³í¹®Áý, v.45 n.3 (2025-06)
ÆäÀÌÁö ½ÃÀÛÆäÀÌÁö(385) ÃÑÆäÀÌÁö(9)
ISSN 10156348
ÁÖÁ¦ºÐ·ù /
ÁÖÁ¦¾î ±³Â÷·Î ÃÖÀûÈ­, Tabu Search-Ant Colony algorithm, CO2, ´Ù¸ñÀûÇÔ¼ö ÃÖÀûÈ­ ; Intersection optimization, Tabu Search-Ant Colony algorithm, CO2, Multi-objective optimization
¿ä¾à1 ±³Â÷·Î¿¡¼­ ¹ß»ýÇÏ´Â Áöü³ª Á¤Ã¼´Â ÀÎÁ¢ÇÑ µµ·Î¿¡ ¿µÇâÀ» ¹ÌÄ¡¸ç, ÀÌ´Â µµ½Ã ÀüüÀÇ ±³Åë È¥ÀâÀ¸·Î À̾îÁú ¼ö ÀÖ´Ù. µû¶ó¼­ ±³Â÷·Î´Â ´Ü¼øÇÑ µµ
·ÎÀÇ ¿¬°áÁ¡ÀÌ ¾Æ´Ï¶ó, ±³Åë ½Ã½ºÅÛ Àü¹ÝÀ» Á¦¾îÇÏ´Â ÇÙ½É ÁöÁ¡À̶ó ÇÒ ¼ö ÀÖ´Ù. ÀÌ·¯ÇÑ ÀÌÀ¯·Î ±³Â÷·ÎÀÇ È¥ÀâÀ» ÃÖ¼ÒÈ­ÇÏ´Â ÀÏÀº ±³Åë°øÇÐÀÚ¿¡
°Ô ÁÖ¾îÁø Áß¿äÇÑ °úÁ¦ Áß ÇϳªÀÌ´Ù. ÃÖ±Ù¿¡´Â ±³Â÷·Î ¼º´É Çâ»óÀ» À§ÇÑ ¹æ¾ÈÀ¸·Î ÀΰøÁö´É(AI) ¾Ë°í¸®Áò¿¡ °üÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­, Áö´ÉÇü ±³
Åë ½ÅÈ£ Á¦¾î¿¡ °üÇÑ ¿¬±¸°¡ Ȱ¹ßÈ÷ ÁøÇàµÇ°í ÀÖ´Ù. ƯÈ÷ À¯Àü ¾Ë°í¸®Áò(GA)°ú ÀÔÀÚ ±ºÁý ÃÖÀûÈ­(PSO)¿Í °°Àº AI ±â¹Ý ½ÅÈ£ Á¦¾î ¸ðµ¨À» Ȱ¿ë
ÇÏ¿©, ÁÖÇà ½Ã°£, Áö¿¬ ½Ã°£, Á¤Áö Ƚ¼ö¸¦ ÃÖ¼ÒÈ­Çϰųª ±³Â÷·Î ¿ë·®À» ±Ø´ëÈ­ÇÏ´Â ´Ù¸ñÀû ÃÖÀûÈ­ ±â¹ýÀÌ ¸¹ÀÌ ¿¬±¸µÇ°í ÀÖ´Ù. ÀÌ¿¡ º» ¿¬±¸¿¡¼­
´Â CO2 ¹èÃâ·®À» ´Ù¸ñÀûÇÔ¼ö·Î Æ÷ÇÔÇÑ ÇÏÀ̺긮µå Tabu search-Ant colony ¾Ë°í¸®ÁòÀ» Á¦¾ÈÇÑ´Ù. Á¦¾ÈµÈ ¾Ë°í¸®ÁòÀº ¸»·¹ÀÌ½Ã¾Æ ¾Ë·Î½ºÅ¸
(Alor Setar)ÀÇ ½Åȣȭ ±³Â÷·Î¿¡ Àû¿ëµÇ¾úÀ¸¸ç, SIDRA ºÐ¼®À» ÅëÇØ ¼º´ÉÀ» Æò°¡ÇÏ¿´´Ù. ±× °á°ú, ÃÖÀûÈ­µÈ 116ÃÊÀÇ ½ÅÈ£ÁÖ±â´Â ´ë±â¿­ ±æÀÌ
20 %, CO2 ¹èÃâ·® 18 %, Á¤Áö Ƚ¼ö 25 % °¨¼Ò¿Í ÇÔ²² ±³Â÷·Î ¿ë·®Àº 15 % Çâ»óµÇ´Â °ÍÀ¸
¿ä¾à2 Congestion or delays occurring at intersections can significantly impact adjacent roadways, potentially leading to widespread urban
traffic congestion. Accordingly, intersections should not be viewed merely as points of connection between roads, but rather as critical
control nodes within the broader transportation system. Minimizing congestion at intersections is thus a major challenge for
transportation engineers. In recent years, growing interest in artificial intelligence(AI) algorithms has led to increased research on
intelligent traffic signal control systems aimed at enhancing intersection performance. Many studies have focused on multi-objective
optimization models employing AI-based algorithms such as Genetic Algorithms(GA) and Particle Swarm Optimization(PSO),
targeting reductions in travel time, delays, and the number of stops, or improvements in intersection capacity. This study proposes a
hybrid Tabu Search-Ant Colony Optimization algorithm that incorporates CO2 emissions as a key objective within a multi-objective
framework. The proposed algorithm was applied to a signalized intersection in Alor Setar, Malaysia, and its performance was
evaluated using SIDRA analysis. The optimized signal cycle length of 116 seconds resulted in a 20 % reduction in queue length, an
18 % reduction in CO2 emissions, a 25 % decrease in the number of stops, and a 15 % improvement in intersection capacity. These
findings provide empirical evidence that the proposed algorithm is effective in achieving sustainable and efficient traffic signal control.
¼ÒÀåó ´ëÇÑÅä¸ñÇÐȸ
¾ð¾î Çѱ¹¾î
DOI https://doi.org/10.12652/Ksce.2025.45.3.0385